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Abstract—This paper presents two new, efficient solutions to the two-view,

relative pose problem from three image point correspondences and one common

reference direction. This three-plus-one problem can be used either as a substitute

for the classic five-point algorithm, using a vanishing point for the reference

direction, or to make use of an inertial measurement unit commonly available on

robots and mobile devices where the gravity vector becomes the reference

direction. We provide a simple, closed-form solution and a solution based on

algebraic geometry which offers numerical advantages. In addition, we introduce a

new method for computing visual odometry with RANSAC and four point

correspondences per hypothesis. In a set of real experiments, we demonstrate the

power of our approach by comparing it to the five-point method in a hypothesize-

and-test visual odometry setting.

Index Terms—Computer vision, structure from motion, visual odometry, minimal

problems, Groebner basis.
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1 INTRODUCTION

DATA association has been identified as one of the two main
challenges in visual odometry, next to observation noise.
Cluttered environments with independently moving objects yield
many erroneous feature correspondences which have to be
detected as outliers. Random Sample Consensus (RANSAC)
provides a stable framework for the treatment of outliers in
visual odometry [1]. For RANSAC, it is desirable to have a
hypothesis generator that uses the minimal number of data points
to generate a finite set of solutions since this minimizes the
probability of choosing an outlier as part of the data. In this
paper, we propose a new minimal method, the “three-plus-one”
method, for computing relative pose for monocular visual
odometry that uses three image correspondences and a common
direction in the two camera coordinate frames, which we call a
“directional correspondence.” We thus enable visual odometry
using RANSAC with only a four-point minimal solver as long as
the fourth point is sufficiently far away.

The main contribution of this paper is the introduction of two
new, efficient algorithms for the three-plus-one problem. After
formulating the relative pose problem as a system of four
polynomial equations in Section 3, we present a direct, closed-
form solution, leading to a quartic polynomial of one variable in

Section 4. Our second method, based on the action matrix method
from Byrod et al. [2], is presented in Section 5.

The second contribution of this paper is threefold: We
provide a detailed computational analysis of both solutions in
Section 7, highlight the differences in numerical properties in
Section 8, and show that the three-plus-one method can be used
in place of the widely used five-point method in real-world
visual odometry applications in Section 9.2. When used with
RANSAC, our visual odometry does not require any knowledge
about which points are at infinity because we simply let
RANSAC choose the inlier hypothesis from all available image
correspondences. In Section 9.3, in order to demonstrate the
potential of our method for vision-inertial fusion, we present
the results of a real experiment where we use the IMU to
provide a directional constraint.

2 RELATED WORK

Minimal solvers were first introduced by Nister [3] with his
famous five-point algorithm for structure from motion. Since then,
minimal solutions have been found for a number of problems in
geometric vision, including the solutions to the autocalibration of
radial distortion [4], [5], pose with unknown focal length [6],
infinitesimal camera motion problem [7], and others. The trend in
this field has been to use algebraic geometry techniques to analyze
problem structure and construct solvers. This body of work was
initially based on Gröbner bases techniques [8], but recently started
to include other related methods for finding solutions to algebraic
systems in order to improve speed and accuracy [9], [2]. These
techniques have been applied to nonminimal problems as well,
such as three-view triangulation [10], [11].

It has been known [12] and it is straightforward to deduce that
knowledge of the directional correspondence reduces the number
of rotation unknowns to one. There have been three previous
papers dedicated to solving the three-plus-one problem. However,
all of them fall short of providing either efficient or closed-form
solutions. The formulation from Kalantari et al. [13] requires three
variables for the translation and uses the tangent half-angle
formula to create a polynomial system. They solve the system
using the action matrix method, leading to 12 solutions and a
singularity at the rotation of 180 degrees. In their later paper [14],
the solution was improved to give four solutions; however, the
model remained less efficient than ours (it still uses the half-angle
formula) and no closed-form solution is given explicitly. Our
formulation improves on this method by taking advantage of the
fact that one of the translation components is nonzero, leading to a
smaller system that has four solutions and no rotation instability.
Our solution is presented explicitly in closed form.

Our work is concurrent with work by Fraundorfer et al. [15],
where a different formulation is used to obtain a system with only
four solutions. Their method follows the method used by Nister for
the five-point algorithm [3], except the solution subspace is now
three-dimensional instead of four-dimensional. This formulation
leads to a fourth-order polynomial and the minimum number of
solutions. However, this solution requires null-space extraction
and a Gauss-Jordan elimination of a dense 10� 6 matrix to obtain
the coefficients. While our formulation also leads to fourth-order
polynomial, the coefficients of our polynomial are computed faster
and in closed form.

In addition, compared to the previous work above, we provide a

more elaborate experimental analysis, including real-world situa-

tions and a detailed discussion of the degenerate configurations.
Another related work was by Lobo and Dias [16] who use a

general formulation of a given reference direction (vertical in their

case) to solve several geometric vision problems by using

vanishing points or inertial measurements.
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3 PROBLEM FORMULATION AND NOTATION

Given image point correspondences q and q0 in two calibrated
views, it is known that the “essential matrix” constraint relating
them is q0>Eq ¼ 0, where E � t̂S where the rotation matrix S 2
SOð3Þ and t̂ is a 3� 3 skew-symmetric matrix corresponding to the
translation vector t, which is known only up to scale. The essential
matrix thus has five parameters.

We will now define and formulate the three-plus-one problem.
We are given three image correspondences qi $ q0i, i ¼ 1; 2; 3, from
calibrated cameras, and a single directional correspondence in the
form of two unit vectors d$ d0. Our goal is to find the essential
matrix E which relates the two cameras, and thus find the rigid
transformation between them up to a scale factor. We will first
show that this problem is equivalent to finding the translation
vector t̂ and a rotation angle � around an arbitrary rotation axis.

Let us choose the arbitrary rotation axis to be e2 ¼ ½0; 1; 0�>. We
can now compute the rotation matrices R and R0 that coincide d
and d0 with e2, and apply them to the respective image points,
yielding pi ¼ Rqi and pi

0 ¼ R0qi
0 for each i ¼ 1; 2; 3. This operation

aligns the directional correspondence in the two views with e2.
Once the axis is chosen, we only need to estimate the rotation angle
around it and the translation vector in order to reconstruct the
essential matrix.

After we account for the directional constraint, from the
initial five parameters in the essential matrix, only three remain.
This three-parameter essential matrix ~E relates the points p and
p0 as follows:

p0i
T ~Epi ¼ 0: ð1Þ

Since the rotation is known to be around e2, we can use the axis-
angle parameterization of a rotation matrix to express ~E as follows:

~E ¼ ~̂t
�
I þ sin �ê2 þ ð1� cos �Þê2

2

�
; ð2Þ

where ~t ¼ R0t.
Each image point correspondence gives us one equation of the

form (1), yielding three equations in four unknowns (elements of ~t

and �). To create a polynomial system, we set s ¼ sin � and
c ¼ cos �, and add the trigonometric constraint s2 þ c2 � 1 ¼ 0, for a
total of four equations in five unknowns. In order to reduce the
number of unknowns and take care of the scale ambiguity in ~E, we
choose the direction of the epipole by assuming that the translation
vector ~t has the form ½x; y; 1�>. This means that for each ~t that we
recover, �~t will also need to be considered as a possible solution.

Once we substitute for ~E in (1), the resulting system of four
polynomial equations has the following form. For i ¼ 1; 2; 3,

ai1xsþ ai2xcþ ai3ysþ ai4yc
þ ai5x� ai2sþ ai1cþ ai6 ¼ 0

ð3Þ

s2 þ c2 � 1 ¼ 0: ð4Þ

We will refer to these equations as F ¼ ffiðx; y; s; cÞ,
i ¼ 1; . . . ; 4g, in the rest of the paper. The coefficients aij are
expressed in terms of image correspondences as follows:

ai1 ¼ p0iypix; ai2 ¼ �p0iy; ai3 ¼ �p0ixpix � 1;

ai4 ¼ p0ix � pix; ai5 ¼ piy; ai6 ¼ �p0ixpiy;
ð5Þ

such that pi ¼ ½px; py; 1�> and p0i ¼ ½p0x; p0y; 1�>. In the next section,
we will analyze and solve this system in closed form and show that
it has up to four solutions. The total number of possible pose
matrices arising from our formulation is therefore at most 8 when
we take into account the fact that we have to consider the sign
ambiguity in ~t. When the motion of the camera in the z direction
(after the rotation by R and R0) is extremely small, the
parameterization ~t ¼ ½x; y; 1�> is numerically unstable. We can

deal with this rare instability by formulating and solving a system
for the parameterizations ~t ¼ ½x; 1; z�> and ~t ¼ ½1; y; z�>, which can
be easily done using the methods we describe below, but omitted
for the purposes of this presentation. However, when used with
our four-point RANSAC, the randomly chosen directional corre-
spondences from image points give rise to different ~t (though still
the same t), making the probability of z being close to zero even
smaller. The experiments show that the reformulations are
unnecessary in practice.

In order to find the pose matrices from solutions to the system F ,

we first recover the rotation as Re2
¼ expðatan2ðs; cÞê2Þ and

translation as ~t ¼ �½x; y; 1�>. Finally, we reconstruct each pose as

follows:

P ¼ ½S j t� ¼ ½R0>Re2
R j R0>~t�: ð6Þ

Point triangulation and chirality checks are used to eliminate some

of the false solutions. Since this solution method is designed to be

used in robust estimation frameworks (such as RANSAC), any

remaining false hypotheses can be eliminated by triangulating an

additional point and choosing the P with the minimum reprojec-

tion error.

4 CLOSED-FORM SOLUTION

We hereafter show that the system F has four solutions and that it
can be solved analytically by elimination and back-substitution.
Specifically, we first present an elimination procedure to obtain a
fourth-order univariate polynomial in c, which can be solved in
closed form. Subsequently, we determine the remaining three
variables by back substitution, where each solution of c returns
exactly one solution for the other three variables. Therefore, we
have a total of four solutions for the relative rotation matrix and
translation vector.

The main steps of the elimination procedure are:

1. Solve for x and y as a function of c and s using the first two
equations in (3). The variables x and y are now expressed
as quadratic functions of c and s.

2. Substitute x and y in the third equation in (3). This again
yields a cubic polynomial in c and s, which is reduced into
a quadratic by exploiting the relationship between its
coefficients and the trigonometric constraint.

3. Finally, using the Sylvester resultant (see [17, Chapter 3,
Section 5]), we can eliminate one of the remaining two
unknowns, say s, and obtain a fourth-order polynomial
in c.

Now, we describe the details of our approach. Rewrite the first two

equations in (3) as linear functions of c and s as follows:

a11sþ a12cþ a15 a13sþ a14c
a21sþ a22cþ a25 a23sþ a24c

� �
x
y

� �
¼ a12s� a11c� a16

a22s� a21c� a26

� �
; ð7Þ

and solve the above linear system for x and y

x

y

� �
¼ 1

d

a23sþ a24c �ða13sþ a14cÞ
�ða21sþ a22cþ a25Þ a11sþ a12cþ a15

� �

a12s� a11c� a16

a22s� a21c� a26

� �
;

ð8Þ

where the determinant

d ¼ ða11sþ a12cþ a15Þða23sþ a24cÞ
� ða21sþ a22cþ a25Þða13sþ a14cÞ:

ð9Þ

Substituting the expression for x and y into the third equation in (3)

and multiplying both sides of the equation by d yields a cubic

equation in s and c
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g1s
3 þ g2cs

2 þ g1sc
2 þ g2c

3 þ g3s
2 þ g4scþ g5c

2 þ g6sþ g7c ¼ 0:

ð10Þ

The coefficients gi for i ¼ 1; . . . ; 6 are derived symbolically and are

found in (13). By using the fact that s2 þ c2 ¼ 1 and exploiting the

relation between the coefficients of the first four terms, we can

reduce this equation to the following quadratic:

g1sþ g2cþ g3s
2 þ g4scþ g5c

2 þ g6sþ g7c ¼ 0: ð11Þ

In the final step, we employ the Sylvester resultant to eliminate

one of the two remaining variables from (4) and (11). The

resultant of the two polynomials is the determinant of the

Sylvester matrix:

g3 g4cþ g1 þ g6 g5c
2 þ g2cþ g7c 0

0 g3 g4cþ g1 þ g6 g5c
2 þ g2cþ g7c

1 0 c2 � 1 0
0 1 0 c2 � 1

2
664

3
775; ð12Þ

which leads to a fourth-order polynomial equation
P4

i¼0 hic
i ¼ 0,

with coefficients hi, given in (14). This shows that, in general, the

system has four solutions for c. Back-substituting the solutions of c

into (11), we compute the corresponding solutions for s. Note that

each solution for c corresponds to one solution for s because we

can reduce the order of (11) to linear in s, once c is known, by

replacing the quadratic terms s2 with 1� c2. After s and c are

determined, we compute the corresponding solutions for x and y

using (8), for a total of four solutions. Section 3 describes the

recovery of the pose matrix from x, y, s, and c.
The coefficients gi in the polynomial (11) are

g1 ¼ �a11a23a32 þ a13a21a32 � a12a21a33 þ a11a22a33 þ
þ a23a12a31 � a13a22a31;

g2 ¼ �a24a11a32 þ a14a21a32 � a12a21a34 þ a11a22a34 þ
þ a12a24a31 � a14a22a31;

g3 ¼ �a23a16a31 þ a13a26a31 þ a23a12a35 � a13a22a35 �
� a11a26a33 þ a15a22a33 þ a21a16a33 � a25a12a33 �
� a15a23a32 þ a13a25a32 þ a11a23a36 � a13a21a36;

g4 ¼ �a23a16a32 � a24a16a31 þ a13a26a32 þ a14a26a31 �
� a11a23a35 þ a12a24a35 þ a13a21a35 � a14a22a35 �
� a11a26a34 � a12a26a33 þ a15a22a34 � a15a21a33 þ
þ a21a16a34 þ a22a16a33 � a25a12a34 þ a25a11a33 þ
þ a15a23a31 � a15a24a32 � a13a25a31 þ a14a25a32 þ
þ a24a11a36 þ a23a12a36 � a13a22a36 � a14a21a36;

g5 ¼ �a24a16a32 þ a14a26a32 � a24a11a35 þ a14a21a35 �
� a12a26a34 � a15a21a34 þ a22a16a34 þ a25a11a34 þ
þ a15a24a31 � a14a25a31 þ a12a24a36 � a14a22a36;

g6 ¼ �a23a16a35 þ a13a26a35 � a15a26a33 þ a25a16a33 þ
þ a15a23a36 � a13a25a36;

g7 ¼ �a24a16a35 þ a14a26a35 � a15a26a34 þ a25a16a34 þ
þ a15a24a36 � a14a25a36;

ð13Þ

where aij come from (5). The coefficients of the quartic polynomial

in c are

h0 ¼ �g2
1 � 2g1g6 � g2

6 þ g2
3;

h1 ¼ 2g3g2 � 2g4g6 þ 2g3g7 � 2g4g1;

h2 ¼ �g2
4 þ g2

1 þ g2
6 þ g2

2 þ g2
7 � 2g2

3 þ 2g1g6 þ 2g2g7 þ 2g3g5;

h3 ¼ 2g4g1 þ 2g4g6 þ 2g5g2 þ 2g5g7 � 2g3g2 � 2g3g7;

h4 ¼ g2
4 þ g2

5 þ g2
3 � 2g3g5:

ð14Þ

The quartic equation built from the coefficients hi yields the

solution for c.

5 ACTION MATRIX SOLUTION

In this section, we will present a method for solving the system F

via eigendecomposition of an action matrix. The elimination

template was constructed using symbolic mathematics software

Maple. We present only the steps required for implementation of

the method and refer the reader to [2], [18], [19] for details. The

coefficient matrix C was optimized using the method in [20]. From

each of the five vectors listed in (15) we create three rows of C by

substituting aij for i ¼ 1; 2; 3. The last six rows, C16 :: 21;1 :: 25, are

shown in (16). Equations (15) and (16) are shown in Fig. 1.
Below we list the steps required to construct this action matrix

and read off the solutions from its eigenvectors.

1. Construct the 21� 25, sparse elimination template matrixC
using the coefficients aij and (15) and (16).

2. Perform Gaussian elimination with partial pivoting or LU
decomposition of C. Let U be the resulting upper
trapezoidal matrix.

3. Extract two submatricesA ¼ U19::21;19::21 andB ¼ U19::21;22::25.
Compute �D ¼ A�1B.

4. Construct the 4� 4 action matrix Mc as follows: Mc1::3;1::4 ¼
D and Mc4;1::4 ¼ ½0; 1; 0; 0�. The columns of Mc correspond
to monomials ½y; c; s; 1�.

5. Compute the real eigenvectors of Mc and divide each by its
last element.

6. The values of y, c, and s in that order are the first three
entries of each normalized eigenvector.

7. For each set of values for y, c, and s, compute x by solving
(3), which is linear in x.

These values can be once again used to extract the pose matrices, as

described in Section 3.

6 DEGENERATE CONFIGURATIONS

It was pointed out in [15] that the three-plus-one algorithm is not

degenerate for collinear world points, except for the line parallel to

the translation direction. It turns out that this degeneracy is only a

special case of two additional degenerate configurations.
The first one occurs when all world points lie on the horopter

[21], i.e., their projections are the same in the first and second

images up to a projective transformation, which is an ambiguous

configuration for two views [22, Result 22.21]. Algebraically, this

configuration causes the coefficients ai4 from (5) to vanish,

removing the terms of the form ai4yc from the equations. The

resulting polynomial system no longer generates a zero-dimen-

sional ideal, and thus has an infinite number of solutions.
The second degenerate configuration occurs when the determi-

nant d in (8) is zero. When this occurs, the translation ~t cannot be

estimated from the point correspondences using the (8). We can

derive the geometric condition that causes the determinant to

vanish as follows: After projecting two generic 3D points xi ¼
½Xi; Yi; Zi�> for i ¼ 1; 2 into the camera frames, we get pi ¼ xi and

p0i ¼ Re2
xi þ ~t. We compute the corresponding coefficients (5), and

substitute them into (9). After using the fact that s2 þ c2 ¼ 1, the

determinant condition becomes

ðZ2Y1 � Z1Y2Þðcx� sÞ þ ðZ1X2 �X1Z2Þy
þ ðX1Y2 �X2Y1Þðsxþ cÞ ¼ 0;

ð17Þ

which we can rewrite as ð�R>e2
~tÞ>x̂1x2 ¼ 0. This condition means

that the second camera’s center of projection, expressed in the first

camera’s coordinate system, is orthogonal to the vector formed by
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the cross product of the world points. In other words, the
degeneracy occurs when the world points are coplanar with the
translation vector. This is a more general case than the three points
parallel to the translation direction discussed in [15]. A geometric
argument can be made via Chasles’ Theorem [22, Theorem 22.3]
since five points on a plane (three world points and two camera
centers) generally define a conic. The theorem proves that in this
case there exist alternative reconstructions. We note that while the
closed-form solution is degenerate when the two correspondences
i ¼ 1; 2 in (5) are coplanar with the baseline, the action matrix
method only fails when all three points are coplanar with t.

In practice these degeneracies do not cause a large number of
errors, as seen in the experiments.

7 COMPUTATIONAL CONSIDERATIONS

When using RANSAC, we can estimate the probability of success
in getting an outlier-free hypothesis based on the number of
elements in the minimal data set. When we estimate the epipolar
geometry using image correspondences only, there are two sets of
inliers: the set that can be used as directional correspondences and
a set that can be used as a point correspondences. Both inlier ratios
have to be taken into account when computing the RANSAC
stopping criterion. If the number of distant points is sufficiently
large (such as in outdoor scenes), we can realize a significant
performance gain with our method since fewer hypotheses will
need to be considered [23] due to smaller model size.

Since the hypothesis generator will run hundreds of times per
frame in RANSAC-based visual odometry schemes, it is important
to compare the computational requirements for the five point
algorithm with the proposed methods. Computing the coefficients
aij requires nine multiplications. The closed-form solution requires
125 multiplications before arriving at the quartic polynomial. The
real roots of the fourth degree polynomial can be extracted in closed
form by computing and solving the depressed quartic and two
quadratics for a total of about 40 operations and six square roots.
The computation of the remaining variables takes an additional
144 operations. The main computational step of the action matrix
algorithm is Gaussian elimination (LU decomposition) of a 21� 25

matrix. While theoretically taking Oð2n3=3Þ, or about 9,000 opera-
tions, the elimination of our sparse matrix only requires about 500
multiplications. The eigenvalue decomposition of a 4� 4 matrix is
done by solving a quartic equation and eigenvectors are extracted
with an inverse power iteration, which costs 88 multiplications.

On the other hand, the main computational steps in the classic
five-point algorithm [3] are: extraction of the null space of a dense
5� 9 matrix, requiring 280 operations, Gauss-Jordan elimination of
a dense 10� 20 matrix, requiring about 1,300 operations, and real
root isolation of a 10th degree polynomial, which can be
accomplished as eigenvalue decomposition of a 10� 10 sparse
companion matrix or as an iterative root isolation process. From

these observations we can conclude that both the closed form and
the action-matrix forms of the three-plus-one algorithm are
significantly more efficient than the five-point algorithm. In real
experiments, the performance of the C implementation of the
closed-form algorithm outperformed an optimized implementa-
tion of the five-point method, on average, by a factor of 5 (2:6 �s
compared to 13:0 �s on a 3 GHz laptop).

8 SIMULATION RESULTS

In this section, we establish the expected performance level of our
algorithms in noise-free and noisy conditions, comparing them
first to each other and then to the five-point relative pose
estimation algorithm. We study both single and double precision

arithmetic implementations for the action matrix and closed-form
algorithms, and look for numerical differences between them, as
well as the differences between the five-point method and the
more constrained three-plus-one method.

The input data were generated as follows: The pose of the first
camera was defined to be the identity pose ½Ij0� and the reference
direction was generated as a random unit vector. The pose of the
second camera was generated uniformly at random as a unit
translation vector t and three Euler angles corresponding to the roll,
pitch, and yaw of the second camera within the limits specified by
the experiment. Sets of five three-dimensional world points were
generated within a spatial volume defined by the parameters of the
experiment, so as to be visible by both cameras. The world points
were then projected into the image planes of the two cameras (with
identical intrinsic calibration defined by the experiment) to form
image correspondences, and contaminated with Gaussian noise
with standard deviation in pixels defined by the experiment.
The second camera’s reference direction was then computed, and
the directional correspondence vectors were contaminated by
Gaussian rotational noise with standard deviation in degrees
defined by the experiment. The sets of image and directional
correspondences were then used to compute pose with the three-
plus-one and the five-point algorithms. Each method produces a set
of pose hypotheses for each input set. The error reported for each
input set is the minimum error for all hypotheses. All comparisons
between algorithms were run on identical input data.

8.1 Numerical Stability with Noise-Free Data

First, we establish the correctness and numerical stability of our
algorithms. In these experiments, the pose was allowed to vary
over the entire range of rotations, and the translation and
directional correspondence vectors were generated uniformly at
random and normalized to length 1. Fig. 2 shows errors in pose
recovery on perfect, simulated data. The noise metric is the
minimum Frobenius norm of the differences between the true pose
matrix and each computed pose matrix (up to eight per instance).
The error distribution shows that both algorithms perform as
expected, with the action matrix method exhibiting better
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numerical stability. The numerical stability of the closed-form

method can be improved by solving the problem three times, using

different pairs of points in (7), but the computational cost of

computing and then scoring the additional hypothesis makes this

impractical, as we saw in Section 7.

8.2 Image and Directional Correspondence Noise

In the rest of this section, we will simulate a 640� 480 camera with
a 60 degree FOV, where structure points are found between 10 and
40 baselines away, where one baseline is the distance between
camera centers. We will first consider only pixel noise, and deal
with directional correspondence noise later. Fig. 3 compares
performance for forward and sideways motion of the camera
under different pixel noise and directional correspondence noise
conditions. It comes as no surprise that forward motion is
generally better numerically, and that the rotation estimate
(1DOF) is significantly better than the estimate of the epipole.
The plots also conclusively demonstrate numerical stability of both
single and double precision implementations. Further experiments
described in the technical report [24] demonstrate that in these
noisy conditions, the performance of the single and double
precision action-matrix method and the single precision closed-
form method are almost identical.

The directional noise was simulated as a rotation of the direction

vector around a random axis with an angle magnitude drawn from

a normal distribution. The standard deviation of the noise is plotted

on the x-axis.

8.3 Comparison with the Five-Point Method

We also compare the three-plus-one method to the classic five-

point method. While they are not equivalent (since the five-point

method does not require a specific point to be at infinity), they can

be used interchangeably in some real situations, as described in the

next section.
Since both closed-form and action-matrix-based algorithms

exhibit similar performance, we only compare the double precision

implementations of our closed-form algorithm and the five-point
algorithm. Fig. 4 demonstrates the effect of the field of view on
the algorithms. The rotation estimation is generally better with the
three-plus-one algorithm, while translation error does not decrease
as quickly with the field of view in the three-plus-one case as in
the five-point case. In Fig. 5, we plot errors for several levels of
directional noise while varying the pixels noise. It is clear from the
graphs that the three-plus-one algorithm is better at estimating
rotations than the five-point algorithm, even under significant
error in the directional correspondence, but the five-point method
is better at estimating sideways translation, even in the cases of
small error in the directional correspondence.

In real experiments, we will use our method to compute vision-

only relative pose, when points at infinity are present. But first, we

compare the performance of the five-point and the three-plus-one

methods in this scenario in simulation. The directional correspon-

dence in this case is generated as a projection of a point at infinity,

contaminated with noise and made unit length. The directional

correspondence noise can now be measured in pixels, putting the

two methods on equal footing. From the results shown in Fig. 6 we

conclude that our method outperforms the five-point method,

while using only four image points, in estimating rotation in

forward and sideways motion, and translation in forward motion.

Our method does a slightly worse job estimating translation in the

sideways motion.

9 MONOCULAR VISUAL ODOMETRY

Recall that one of the main goals of this work is the
demonstration of monocular, RANSAC-based visual odometry
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Fig. 2. Distribution of numerical errors in recovered poses for 104 random
configurations with single and double precision implementations. The error
measured is the Frobenius norm of the difference between the true and estimated
pose matrices. Median errors for double precision are 3:9 � 10�14 for the action
matrix and 3:1 � 10�13 for the closed form method. For single precision the errors
are 9:3 � 10�6 and 3:5 � 10�5, respectively.

Fig. 3. Median translation and rotation errors for the sideways and forward motion
of the camera against noise standard deviation for the double precision
implementation of the closed-form method. The directional correspondence noise
is in degrees, and the image noise is in pixels. As with other motion estimation
methods, the sideways motion gives significantly worse performance than forward
motion on the same data.

Fig. 4. Median translation and rotation errors for varying fields of view of
the camera and random poses. The three-plus-one algorithm is labeled “3p1” and
the five-point algorithm is “5p”. The number after the algorithm name indicates the
standard deviation of pixel and directional (for the three-plus-one method only)
error standard deviations levels in pixels and degrees. The colors also
correspond to noise levels: Red is 0.1 pixel and 0.1 degree, red is 0.5 pixel
and 0.5 degree, and green is 1.0 pixel and 1.0 degree.

Fig. 5. Comparison of the median errors of the three-plus-one algorithm with the
five-point algorithm for the cases of forward and sideways motion for different
directional noise levels. In the legend, the three-plus-one algorithm is labeled “3p1”
and the five-point algorithm is labeled “5p”. The number after the algorithm name
indicates the standard deviation of the directional noise in degrees. The green
sequence with the “x” marker corresponds to the median errors in the five-point
algorithm.



with a four-correspondence hypothesis generator without explicit
vanishing point computation. In the traditional five-point
RANSAC, sets of five correspondences are chosen at random.
In our case, sets of four are chosen with the first point becoming
a prospective directional correspondence. In effect, there are now
two pools of inliers: one pool for points at infinity, from which
the first point must be chosen, and the other for points not at
infinity, from which we need three points. Since most outdoor
scenes have no shortage of faraway feature matches, RANSAC
had no trouble choosing the right hypothesis.

9.1 Experimental Setup

We used our C++, double-precision implementations of the closed-
form and action-matrix-based methods to test the algorithm in the
visual odometry context. We used a hand-held, 640� 480 pixel,
black and white camera with a 50 degree field of view lens to
record an 825-frame, outdoor video sequence for comparison with
the five-point algorithm (see sample images in Fig. 7a). This
experiment used the action matrix implementation. The second
data set was recorded with a similar camera from a mobile robot
platform and included high accuracy ground truth (see Fig. 9), and
hypotheses were computed using the closed-form implementation.

For both data sets, we used the monocular scheme given in [1].
Harris corners and correlation matching were used to obtain
image correspondences. The experiments consisted of using the

correspondences to estimate camera motion with the standard
five-point algorithm and our three-plus-one algorithm. We
computed 200 hypotheses for each image pair. The correspon-
dences, the number of hypotheses, and the other system
parameters remained the same, and only the pose hypothesis
generator was changed between experiments. The directional
correspondence was simply image point correspondence, where
each point was made unit norm.

9.2 Structure from Motion Results

In Fig. 7b, we stitched together the poses and highlighted the
places where breaks in the path occurred. Since we know that we
have enough points to track, the failures are due to RANSAC-
based pose estimation or RANSAC-based scale estimation and is a
result of a failure to choose an inlier subset. It is interesting to note
that the failures happened in different places with different
algorithms due to randomness of sampling. We expect more
robust results (fewer breaks) from the three-plus-one method, and
we found it to be the case due to the limited number of hypothesis.

In order to quantify the real-world performance, we com-
puted relative pose for each consecutive pair of frames in the
data set with each algorithm. Fig. 8 shows the histogram of
differences in relative pose components between the three-plus-
one and five-point algorithm. This once again demonstrates that
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Fig. 6. Comparison of the three-plus-one algorithm with the five-point algorithm in
the case when the directional constraints are derived from image points at infinity.
The plots show median errors in pose estimation. The green sequences with the
“x” marker show performance of the five-point algorithm and the blue sequences
with the “�” marker correspond to the three-plus-one algorithm. The directional
correspondences are derived from points at infinity and contaminated with the
same pixel noise as the other image points. This graph shows the superior
performance of the three-plus-one method in rotation estimation for forward and
sideways motion, as well as translation estimation in forward motion.

Fig. 7. (a) Sample images from our hand-held data set. (b) Estimated camera
trajectories for the outdoor data set using our three-plus-one method (blue) and
the five-point algorithm (green). The red squares and circles indicate places where
scale was lost and trajectory was manually stitched together. Overall, the poses
recovered with each method are very similar up to scale (see Fig. 7). The scale
was not reset after stitching, so each piece of the trajectory has a different scale.
Since the translation is up to scale, the translation units are set arbitrarily. The total
length of the track in the real world was about 430 m, of which we were able to
travel about 230 m before the first break under challenging imaging conditions.

Fig. 8. Differences in recovered relative pose between our algorithm and five-point
for the experiment in Fig. 7. The differences are small, except for the few frames
where one of the methods failed to find the right hypothesis. Those places are
marked in Fig. 7. The differences for a total of 824 consecutive frame pairs were
computed. This shows that we can count on RANSAC to choose correctly the
points at infinity and that in a realistic scenario there are enough such points to
enable the three-plus-one visual odometry.

Fig. 9. (a) Sample images from the 2,582-frame mobile robot data set.
(b) Trajectories obtained using visual odometry with the proposed hypothesis
generator and the ground truth collected using a Topcon tracking total station. The
three-plus-one visual odometry (solid red) was manually scaled (with a single
overall scale and a correction factor for scale drift) and aligned with the ground
truth (dashed blue). The results demonstrate that the algorithm performs correctly
in outdoor scenes.



our algorithm can be a reliable substitute for the five-point in
outdoor environments.

To further demonstrate the real-world performance, we
collected a 2,582-frame video from a mobile robot, where the
position of the robot was tracked with a Topcon tracking total
station. In this experiment the hypotheses were generated with the
closed form method. The resulting trajectory is plotted in Fig. 9b.

9.3 Structure from Motion Results with a Camera and an
IMU

We investigated using our algorithm to combine visual and inertial
data by introducing the gravity vector in the camera coordinate
system as the directional correspondence. For this data collection,
the camera was rigidly mounted on a rig with a Microstrain 3DM-
GX1 IMU, and data were synchronously acquired from both
devices. We collected an indoor data set and used the visual
odometry setup described above to compare the five-point method
with our three-points-plus-gravity method. The results are
presented in Fig. 10. In this data set, RANSAC with the five-point
hypothesis generator generally performed similarly to our method,
but failed to accurately recover relative pose for one of the frames,
resulting in a jump near the bottom left of the trajectory and failure
to close the loop.

10 CONCLUSIONS

We presented two efficient algorithms to determine relative pose
from three image point correspondences and a directional corre-
spondence. From our analysis and experiments we learned that:

. The more constrained three-plus-one method does a better
job of estimating rotations than the five-point method.

. Both the closed-form and action-matrix implementations
are faster than the five-point method, making them
attractive for real-time applications.

. The action-matrix method yields a solution with better
numerical performance than the simpler, closed-form
algorithm, but the differences are not significant in realistic
settings.

. Since the action-matrix method can perform better in
single precision implementation, it should be considered
for processors with 32-bit floating-point arithmetic where
extra precision is required.

. When used with RANSAC, smaller minimal data set can
lead to improved robustness.

. The three-plus-one algorithm can provide accurate and
robust results in real-world settings when used with

RANSAC and bundle adjustment, and can be used to
perform visual odometry for outdoor scenes with or
without aid from an IMU.

We believe that the real power of this algorithm is that it can be
used as a complement to the five-point algorithm to increase the
reliability and speed of visual navigation systems.
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Fig. 10. Camera trajectories from a short indoor data set where the reference
direction was provided by the IMU. The red solid lines and dashed blue lines
connect the centers of projection determined with our method and the five-point
method, respectively. The coordinate axes attached to each point show the rig’s
relative orientation in space. The motion was approximately a loop, produced by
hand, while exercising all six degrees of freedom, as seen by the orientation of the
coordinate axis.


